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Abstract—This paper presents a new modal index analysis 
method for evaluating the resonances of PCSEL structures which 
is versatile, efficient and fast. Hence it is envisaged that the 
implementation of this method will enhance the potential to 
generate more comprehensive models of photonic crystal based 
devices, say, PCSELs, that include, for example, aspects of 
inversion population distribution and also time dependence while 
still retaining relatively modest demands on computational 
resources. 

I. INTRODUCTION  

The photonic crystal surface emitting laser (PCSEL) has 
shown significant promise recently and has received much 
attention because of its potential to generate high power, 
monochromic operation with a narrow output beam from a large 
optically active area [1]. A primary requirement in modelling 
PCSELs is the evaluation of the optical field distribution that 
identify the resonant (lasing) mode. Conventional techniques 
such as plane wave expansion (PWE)[2], finite difference time 
domain (FDTD)[3], and coupled mode theory (CMT) [4]have 
been widely used to analyse the pertinent 2-D photonic crystal 
(PC) structures. However, these techniques are either 
computationally very time consuming or mathematically rather 
intensive and demanding.  

In this paper, an alternative approach based on modal indices 
analysis (MIA) which is applicable to a piecewise constant 
media, in combination with a simple and fast numerical 
computation is used to evaluate the resonant modes in a 
rectangular geometry 2-D PC structure.   

 
II. MODEL DESCRIPTION 

     A rectangular co-ordinate system ( , , )x y z is used consistent 
with the rectangular device geometry. Fig. [1] which gives a 
schematic representation of the pertinent planar periodic 
structure in the x-z plane with a refractive index profile ( , )x zη , 

and the excitation is taken to be such that any non-zero field 
component, ˆ ˆ( , , ) ( , )F x y z F x z= [5], i.e., 0y∂ ∂ ≈ is applicable. 

Any nonzero field component ,
ˆ ( , )m nF x z for the resonance 

modes (m, n; integers) satisfied the wave equation: 
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The procedure for obtaining ,

ˆ ( , )m nF x z begins by first 

considering a piecewise-constant multilayer structure as shown 
in Fig.[2a]; the characteristic waves (modes), ( )mf x which 
propagates along the z-axis with the corresponding mode indices

,eff mη are evaluated over a pertinent range of wavelength using 

the transfer matrix method[6] as an excitation problem rather 
than as an eigenvalue problem[7] as the former readily evaluates 
a wider range of solutions and provides more insight.  

 
Fig. 1 Schematic of PC structure. Nx and Nz are number of periods 

along x and z respectively. 

 
Fig. 2 Model description: a) Lateral modes propagating along the z-
axis are computed for a relevant range of wavelengths. b) The shaded 
area with dark blue region representing the multilayer waveguide in 
Fig. 2a) is replaced by a homogeneous medium of effective modal 
index ,eff mη , thus resulting in a 1-D periodic grating along z with a 

unit cell composited of ,eff mη and ,eff bη . 
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Then, discontinuities along the z-axis are introduced in to the 

(waveguide) structure, Fig. [2a] to ‘create’ the 2-D PC structure 
corresponding to Fig. [1] and this is then analysed as a 
waveguide discontinuity problem. Multimode generation at 
discontinuities [8] is approximated by single (self-mode) 
conditions so that a simple modal index (mode impedance) 
analysis at discontinuities is used. However, importantly, 
consideration of diffraction of modes in to the homogenous 
region ( bη ) at the discontinuities provides a modified (effective) 
index for the homogenous regions. Thus, the refractive indices 
in segmented regions (as shown in Fig. [2b] with green arrows) 
are further modified accordingly into ,eff bη using in-plane 

diffraction[9]. The transfer matrix method is then used to obtain 

the resonances , [ ; ( )]n m mg z f x of such effective periodic structure 

(Fig. [2b]) composited of unit cell { }, ,,eff m eff bη η , which in 

effect, includes reasonably well the characteristics of the original 
2-D periodic media (Fig. [1]). Hence the final 2-D field 

distribution at resonances are , ,
ˆ ( , ) ( ) [ ; ( )]m n m n m mF x z f x g z f x= . 

III. RESULTS AND DISCUSSIONS 

The resonance wavelength is searched over an appropriate 
range and the final result (resonances), ,

ˆ ( , )m nF x z , of such 

structure are represented by , 0( , )eff mη λ pairs, referring to Fig. 

[3a]. Optical gain are included as a convenience for easier 
identifying band edge (lasing) mode as illustrated in Fig. [3a]. 
Band edge modes obtained by this method match closely with 
those calculated using CMT over a large range of filling factor 
(Fig. [3b]) and over a large range of refractive index differences 
(Fig. [3c]). 

Further detail of modelling process, analysis of finite size 
PCs, with discussions on the consistency and validity of the 
model will be presented at the conference. 

IV. CONCLUSION 

In this work, a novel method for solving resonance in 2-D 
PC using mode index analysis is presented. The method is based 
on wave propagation in periodic multilayer structure. Full use of 
transfer matrix makes the computation process modest and fast. 
It is shown that the method is versatile and yields very reliable 
results. In view of above, the MIA method is promising in more 
comprehensive device modelling such as spatial and temporal 
variation in optical gain and other PC configuration. 
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Fig. 3 a) 2-D resonances of PC calculated using MIA. (band edge 
resonances: Mode 1 and Mode 2). b) Band edge resonances calculated 
with varying filling factor. c) Band edge resonances calculated with 
varying aη  
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