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Abstract—Non-adiabatic pulse compression of cascaded higher-
order optical solitons is investigated. We demonstrate high 
degree compression of pulses with soliton order N=2, 3, 4 and 5 in 
two or three nonlinear fibers with different second-order 
dispersion coefficients. Each fiber length is shorter than half of 
its soliton period. This compression technique has significant 
advantages over the widely reported adiabatic and higher-order 
soliton compression. 
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I.  INTRODUCTION  
The ability to robustly and routinely produce ultrashort 

pulses has led to transformative technologies in such diverse 
areas as telecommunications, photonics, and biological 
imaging. Ultrashort optical pulse sources are critical 
components for applications in which femtosecond or 
picosecond time resolution, high peak powers, and/or large 
optical bandwidths are required. Ultrashort pulses are usually 
generated with mode-locked lasers. However, mode-locked 
lasers can be complex and costly, and the ultrashort pulses 
emitted from high-energy mode-locked laser sources are often 
chirped, and/or limited to fairly low output powers. As an 
alternative, various pulse compression schemes have been 
proposed to generate ultrashort pulses with high energy 
content. Pulse compressors based on nonlinear fiber optics can 
be classified into two broad categories: grating-fiber and 
soliton-effect compressors [1]. In a grating-fiber compressor, 
the input pulse is firstly propagated in the normal-dispersion 
fiber which imposes a nearly linear, positive chirp on the pulse 
through a combination of self-phase modulation (SPM) and 
group velocity dispersion (GVD), and then compressed 
externally using a grating pair. The grating pair provides the 
anomalous GVD for compression of positively chirped pulses. 
Grating-fiber compressors are useful for compressing pulses in 
the visible and near-infrared regions while soliton-effect 
compressors work typically in the range from 1.3 to 1.6 �m 
[1]. For grating-fiber compressors, the compression factor can 
be estimated by /1.6,cF N≈  where N is the soliton order. 
Although in theory the compression factor can be increased by 
increasing the peak power of the incident pulse, it is limited in 
practice since the peak power should be kept below the Raman 
threshold to avoid the transfer of pulse energy to the Raman 
pulse. For the soliton-effect compression, two commonly 

considered techniques are the higher-order soliton compression 
scheme and the adiabatic pulse compression method. 
Unfortunately, each method suffers from significant 
technological drawbacks: the former from the generation of a 
large pedestal/background structure that contains a large 
portion of the pulse energy [2], and the latter from a limit on 
the compression factor and excessively long dispersion 
decreasing fiber segments [3]. In this paper, a hybrid technique 
is proposed that takes advantage of the strength of both 
compression techniques while avoiding their drawbacks. 
Specifically, we theoretically study the cascaded N-soliton for 
non-adiabatic pulse compression in two or three nonlinear 
fibers with different constant anomalous dispersion 
coefficients. Very large compression factors can be achieved 
with the generation of a relatively small pedestal, making the 
technique competitive with current pulse compression 
technologies. 

II. GOVERNING EQUATIONS 
Optical pulses are typically modeled by reducing 

Maxwell’s equations to the nonlinear Schrödinger (NLS) 
equation [2],     
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where A is the slowly varying amplitude of the pulse envelope, 
z is the distance, t is the time in the pulses’ frame of reference, 

2β  is the second-order dispersion coefficient, and γ is the 
nonlinear coefficient. The soliton order N is defined as 
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where LD and LN are the dispersion length and nonlinear length 
respectively. The fundamental soliton arises for LD=LN. For all 
higher-order solitons (N>1), |A|2 is periodic with the period  
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As a higher-order soliton pulse propagates along the fiber, it 
first contracts to a fraction of its initial width, splits into a 
multi-humped pulse, and then merges again, in a symmetric 
fashion, to recover the original shape at the end of soliton 
period z=z0. In the conventional higher-order soliton 
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compression, the fiber length is chosen so that the soliton pulse 
is at its highest peak during the evolution, which corresponds to 
the minimum pulse width. This gives the maximum 
compression factor possible in the higher-order soliton 
compression schemes. Indeed, the compressed pulse is much 
narrower than the initial pulse. However, the pulse is now 
accompanied by a potentially large pedestal. Specifically, the 
larger the soliton order, the larger the generated pedestal. For 
high-quality pulse compression, the pedestal must be 
minimized in order to suppress the deleterious interaction 
between the pedestal and compressed spike that occurs upon 
further propagation. The interaction leads to a host of 
undesirable periodic pulse reshaping effects that are 
detrimental for optical communication applications. 

III. N=2 SOLITON COMPRESSOR 
The key idea of this paper is to consider switching the 

dispersion of the fiber at the maximal compression point so that 
the localized compressed pulse structure is now ready to be 
compressed again as a new higher-order soliton in the next 
fiber segment. Specifically, consider an N=2 soliton. At a 
propagation distance of z/z0=0.5, the pulse has been 
compressed and its peak intensity increased by a factor of four. 
The idea is to now make this new compressed pulse an N=2 
soliton in a new fiber segment and compress the pulse again so 
that the intensity is again increased by another factor of four. 
All that is required in this process is to determine the length of 
the fiber and the dispersion of the next fiber segment. 
Cascading higher-order solitons this way is a promising 
compression technology provided the pedestal can be kept 
relatively small. 
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Fig. 3. (Color online) Pulse shapes where compression is 
maximized in both the first and second fiber for N=2. The 
dashed curve and solid curve in (a) & (b) represent the input 
pulse and output pulse of the first fiber in (a) linear and (b) 
logarithmic scales. The dashed curve and solid curve in (c) & 
(d) represent the input pulse and output pulse of the second 
fiber in (c) linear and (d) logarithmic scales. 

 

For the proposed 2-stage N-soliton compression, the initial 
pulse is a chirp-free hyperbolic secant pulse 

( )1sech ,N τ whereτ is the normalized time, N1 is the soliton 
order in the first fiber. The output of the first fiber is launched 
into a second fiber with a different dispersion coefficient, and 
the soliton order in the second fiber is N2. Consequently, we 
have 
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1 01 1 21 2 02 2 22/ ,   / ,N T P N T Pγ β γ β= =                      (4) 

where 01,02 1,2 21,22, ,T P β  are the initial pulse width parameter, 
peak power and second-order dispersion in the first and second 
fiber, respectively. Since the input of the second fiber is not an 
exact hyperbolic secant shape, T02 is decided by the pulse 
fitting with a sech2 pulse having the same peak power and full-
width at half maximum intensity (FWHM). Here, we assume 
the nonlinear coefficient γ  is same for the first and second 
fiber. Figure 1(a) and (b) show the pulse shapes where 
compression is maximized in the first fiber when N=2. The 
dashed curve and solid curve represent the input pulse and 
output pulse of the first fiber. The intensity enhancement by a 
factor of four is clearly illustrated. Figure 1(c) and (d) show the 
pulse shapes where compression is maximized in the second 
fiber using a fiber dispersion corresponding to an N=2 fitted 
input soliton.   This example illustrates the key concepts. 

IV. CONCLUSIONS 
     Cascaded higher-order soliton compression can achieve a 
very large compression factor using two or three nonlinear 
fibers with different constant anomalous dispersion 
coefficients. Each fiber length is shorter than half of its soliton 
period. The 2-stage fifth-order soliton compression gives a 
compression factor of 284 and corresponding pedestal of 71%. 
The 3-stage second-order soliton compression gives a 
compression factor of 87 and corresponding pedestal of 27%. 
The 3-stage third-order soliton compression gives a 
compression factor of 600 and corresponding pedestal of 59%. 
These results are highly favorable when compared to the 
standard techniques previously used, thus suggesting that the 
cascaded higher-order soliton compression technique is a 
promising technology that is easy to implement with current 
technological components. 
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