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Abstract—We present a study on tunneling current density
and an investigation of the optical gain of GaAs/AlxGa1−xAs
quantum cascade lasers. Current carrying states are obtained by
taking into account Robin boundary conditions. Our simulation
results show that this approach gives a very good agreement with
other calculations using the Tsu-Esaki model and with simula-
tions based on nonequilibrium Green’s functions. Furthermore,
by incorporating this method into optical gain calculations we
establish good agreement with experimental results.

I. INTRODUCTION

In 1970, Esaki and Tsu [1] proposed using heterostructures
for applications in optoelectronics. The first suggestion to use
intersubband transitions in order to create a laser was made by
Kazarinov and Suris [2]. Over the past several years, quantum
cascade lasers (QCL’s) have proved to be very promising
candidates for practical sources of radiation, particularly in
the midinfrared region [3].
Transport modelling of charge carriers in semiconductor de-
vices is done by means of boundary value problems. In
order to model situations with net current flows and obtain
current-voltage characteristics of a quantum device, one has to
devise boundary conditions which allow current carrying states
instead of using unappropriate ones like the homogeneous
Neumann or Dirichlet boundary conditions which yield a self-
adjoint Hamiltonian matrix. The system described by such a
Hamiltonian is closed. Hence, there is no interaction with the
environment and the current density is identical zero [4]. This
leads to the necessity to consider open quantum systems with
non-selfadjoint boundary conditions.
The focus of this work is on boundary conditions which
yield current carrying states as solutions of the Schrödinger
equation. The theoretical development is based on a Robin
boundary condition approach when a solution with the Dirich-
let boundary condition is available [5]. Within this scheme,
the main focus of our work is to calculate the current density
and the optical gain from the wave functions satisfying these
boundary conditions. Comparing the results obtained with
the proposed approach to other simulations and experimental
measurements, we find that the concept of non-selfadjoint
boundary conditions for the Schrödinger equation is satisfac-
tory to QCL simulations. Our results indicate the importance
of considering adequate boundary conditions in determining
fundamental properties of QCL’s.

II. THEORETICAL MODEL

Let Ω = [0, L] be the domain of the QCL perpendicular to
quantum well layers. We regard Schrödinger’s equation[
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Φi(z) = EiΦi(z) (1)

where Ei is the energy of the ith state and F is the applied
electric field. Assuming an incoming wave from −∞ and no
wave incident from +∞, we can deduce a boundary condition
at ∂Ω = 0 and ∂Ω = L that does not involve reflection and
transmission coefficients [6]
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The transport of charge through the structure arises as a prop-
erty of the quantum mechanical wave function satisfying the
boundary conditions above. The current density is expressed
as [7]
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where A is the cross-sectional area of the quantum well
structure. The distribution functions are determined according
to the Fermi-Dirac distribution for electrons
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where EF is the Fermi energy and Ei(k‖) = Ei + h̄2k2
‖/2m�.

The Ei are quantized energies obtained by solving the
Schrödinger equation with Dirichlet boundary conditions (1).
The optical gain in semiconductor lasers can be estimated as
[8]
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where z12 is the dipole matrix element, nr is the refractive
index, ε0 is the vacuum permittivity and c is the speed of
light. The homogeneous broadening γ is given by

γ(E) = γ0 ×
{

Nph,
(Nph + 1)Θ(E − h̄ωph),

where the top line describes phonon absorption and the bottom
line phonon emission.



III. RESULTS AND DISCUSSION

Figure 1 compares the simulated current density using the
Robin boundary condition approach with the current density
calculated by the Tsu-Esaki model for a GaAs/Al0.3Ga0.7As
Fibonacci superlattice (FSL) [9] which is a quasi-periodic
multibarrier system. The FSL type considered has the se-
quence BBABBABBBABBABBBA, where A and B are the
elementary blocks corresponding to the GaAs quantum well
and the Al0.3Ga0.7As barrier, respectively. The width of the
well block is taken to be 5 unit cells, whereas the number of
the unit cells for the barrier block equals to 3. The appearance
of resonance-type peaks in the current density curves is typical
for quasi-periodic systems, and the results obtained are in good
agreement with the Tsu-Esaki model.
The ability of the chosen boundary conditions to produce
satisfactory current carrying states is also verified by com-
paring our results for the tunneling current density with
calculations based on nonequilibrium Green’s functions [7].
For this purpose a typical example of a midinfrared quantum
cascade laser is considered [10]. The comparison of the
obtained current-voltage results with the simulation employing
the nonequilibrium Green’s functions method is illustrated in
Figure 2. The layer sequence of one period belonging to the
GaAs/Al0.33Ga0.67As structure, in nanometers, starting from
the injection barrier is: 5.8, 1.5, 2.0, 4.9, 1.7, 4.0, 3.4, 3.2, 2.0,
2.8, 2.3, 2.3, 2.5, 2.3, 2.5, and 2.1, where normal scripts repre-
sent the wells, bold the barriers. The simulation is performed
with the number of periods to be 30 and the temperature is
taken to be 77 K. As in the case of quasi-periodic superlattices,
the application of our method to calculate current carrying
states proves to be very promising for periodic QCL structures
as well.
Finally, we focus on the calculation of optical gain under
consideration of the proposed boundary conditions. Figure 3
shows our simulation results to be in good agreement with
measurements that are performed on a GaAs/Al0.15Ga0.85As
QCL [11].
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Fig. 1. Current-density voltage characteristics of a GaAs/Al0.3Ga0.7As
Fibonacci superlattice at T = 200K. The current density is scaled by J0 =
A m−2.
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Fig. 2. Comparison of the current-voltage characteristic of a GaAs/
Al0.33Ga0.67As QCL calculated using the Robin boundary condition ap-
proach with a nonequlibrium Green’s functions simulation.
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Fig. 3. Optical gain of a THz GaAs/Al0.15Ga0.85As QCL driven at 160
A cm−2. The solid line represents the result calculated by using the Robin
boundary condition approach and the dashed line corresponds to measured
values.
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